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The problem of the transport of a quantity (heat, matter or momentum) by
advection-diffusion is considered for arbitrarily large Peclet number in a two-
dimensional domain. In some neighbourhoods of the boundary of the domain,
boundary layers may appear for large Peclet number. It is well known that
classical finite difference methods do not yield approximate solutions with a
guaranteed accuracy if the Peclet number can be arbitrarily large. For such
problems, numerical methods which use monotone finite difference operators
on appropriately fitted piecewise-uniform meshes have been shown to yield
approximate solutions with a guaranteed accuracy independent of the Peclet
number. Numerical examples are presented which verify this property under
various boundary conditions, and comparisons are made with approximate
solutions obtained using alternatively fitted meshes.

1. INTRODUCTION
We consider methods for solving the advection-diffusion problem

eAu+aVu=Ff

in a domain in R? under various boundary conditions. In the case wheree << 1,

which is equivalent to large Peclet number, the problem is said to be advection-

dominated. Here w may be thought of as a concentration of some quantity

(e.g., heat, a pollutant etc.) that is driven by a known advective velocity field

a = (a1,a2) where ¢ is the diffusivity. We presume here that the differential
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operator is approximated by an upwinded finite difference operator, as defined
later, and focus attention on the nature of the computational mesh, which is
presumed to be refined in the boundary layer regions.

The computational meshes, which are referred to in this paper as fitted
meshes, were introduced and analysed in [8] and [7]. There, it was shown,
for various singular perturbation problems, that when appropriate stable finite
difference operators are used in conjunction with these meshes, numerical so-
lutions of guaranteed accuracy (for all values of the diffusion coefficient ¢) are
obtained. The numerical methods are then said to be e-uniform. The attrac-
tion of these meshes, apart from their reliability, is their extreme simplicity:
they are piecewise-uniform meshes, which are condensed in the “layer regions”,
and rely on the identification of a transition point ox ., which is the interface
between the coarser and finer uniform meshes. (Here N is the order of the
mesh.)

The precise definition of oy . varies with the nature of the layer; for example,
in the case of a regular exponential layer, o . = min{1/2, Keln N}, where K
is a constant; and, in the case of a parabolic layer, oy . = min{1/4,/zIn N}.
It is not surprising that o depends on &; however, it is the dependence on N
that is the key to the success of the mesh. The effect of this N-dependence is
that the mesh becomes uniform when N is sufficiently large. The guaranteed
accuracy predicted theoretically in [8] has been verified computationally in,
inter alia, [2], [5],]6].

There are certainly other families of computational meshes which will also
produce e-uniform methods, such as those introduced by Bakhvalov [1]; how-
ever, these meshes are much more complicated in structure than those of
Shishkin. It is thus perhaps not surprising that other piecewise-uniform meshes
have also been suggested. For a layer of order e it is relatively easy to see that
a transition point dependent on £* alone will not suffice [6]; however, recently,
various authors [3], [4], [9] have proposed piecewise-uniform meshes where the
transition point o. is independent of N but dependent on €ln(1/¢)!. One im-
mediately evident disadvantage of such a mesh is that, no matter how large
N is, the mesh will not become uniform. On the other hand, the choice of a
dependence on €1n(1/¢) is based on an awareness of the boundary layer thick-
ness; for any fixed ¢ and relatively small NV, the difference between ox . and o,
is small. There is no suggestion that these meshes can produce a uniformly in
€ convergent solution. Nevertheless it is worthwhile to consider whether there
is a significant difference between solutions on one mesh and on the other.
The main purpose of this paper is to show that there is indeed a significant
difference.

2. A PROBLEM WITH A NEUMANN BOUNDARY CONDITION.
Numerical results are obtained for the specific model problem

ou ou L N201 22 .
5Au+8x+2ay—a:(1 z)*(L—y)?y° on Q=(0,1)x(0,1) (1a)

! In the case of [3], [4] a Schwarz procedure is also used
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with the Dirichlet boundary conditions

u(ly)=1 u(e,1)=1 (10)
and the Neumann boundary conditions
ou ou
—(0,y) =0; e—(z,0)=—-1; 1
SE0) =0 e @0) =~ (10

The fitted mesh for this problem is now defined as

QO = w1 X CJ;
where @; is a uniform mesh of order N in the z-direction. The layer at z = 0 is

weak enough not to require a fitted mesh in this direction. In the y-direction,
w3 is defined as follows. The interval [0, 1] is divided into two parts

[0, Uy], [Uy, 1]
The transition point o, is defined by
oy =min{l/2,eln N},

The intervals [0, 0], [0y, 1] are then divided into N/2 equal parts.
The computed solution for € = .01 is shown in Figure 1 with N = 64.

FIGURE 1. Solution of Problem (1) on fitted mesh Q5% with ¢ = 0.01

We examine the performance of standard upwinding on this mesh. That is,
LNU. = e82U. + sézUE +D}U. + 2D;‘UE =2(1—-2)%(1—y)*y® on QY
where
hi=zi—xi—1, hi=(h;i +hit1)/2
D:Z(mu yj) = (Z(xiJrl:yj) - Z(mla yj))/hiJrl
D;Z(xl) yj) = (Z(mh yj) - Z(xifla y]))/hl
and
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with analogous definitions of D; ;D and 6;. The Neumann boundary condi-
tions are discretised in the obvious way

Diun(zo,y;) =0 eDfun(zi,y0) = —1

The errors are given in Table 1 and the estimated orders of convergence in
Table 2. The errors and rates are estimated as described in [2]

Number of Intervals N

€ 8 16 32 64 128 256
1 .123D+4-00 .605D-01 .293D-01 .137D-01 .586D-02 .195D-02
272 .246D-+00 .121D+00 .586D-01 .273D-01 .117D-01 .391D-02
274 .492D+00 .242D+00 .117D+00 .547D-01 .234D-01 .781D-02
276 .514D+4-00 .331D+00 .201D+4-00 .109D+00 .469D-01 .156D-01
278 .527D-+00 .327D+00 .193D-+00 .106D+00 .515D-01 .190D-01

2-10 .539D+-00 .331D+00 | .193D+4-00 .106D+00 | .515D-01 .190D-01
2-12 .546D+-00 .333D+00 | .194D+4-00 .106D+00 | .515D-01 .190D-01
214 .550D-+00 .334D+00 | .194D-+00 .106D+00 | .515D-01 .190D-01
216 .552D4-00 .334D+00 | .194D+4-00 .106D+00 | .515D-01 .190D-01
2-18 .553D+4-00 .335D+00 | .195D+4-00 .106D+00 | .515D-01 .190D-01

228 .554D4-00 .335D+00 | .195D4-00 .106D+00 | .515D-01 .190D-01

TABLE 1. Errors in approximating u using fitted mesh method

Number of Intervals N

€ 8 16 32 64 | 128

1 1.00 | 1.00 | 1.00 | 1.00 | 1.00
272 1.00 | 1.00 | 1.00 | 1.00 | 1.00
274 1.00 | 1.00 | 1.00 | 1.00 | 1.00
2-6 0.49 | 0.51 | 0.55 | 1.00 | 1.00
2~ 8 0.56 | 0.63 | 0.69 | 0.74 | 0.78
2~ 10 0.61 | 0.64 | 0.69 | 0.74 | 0.78
212 0.62 | 0.65 | 0.70 | 0.74 | 0.78
214 0.63 | 0.66 | 0.70 | 0.74 | 0.78
216 0.64 | 0.66 | 0.70 | 0.74 | 0.78
228 0.64 | 0.66 | 0.70 | 0.74 | 0.78
Uniform: 0.64 0.66 0.70 0.74 0.78

TABLE 2. Convergence rates in approximating u using fitted mesh method

An alternative mesh for this problem is now defined as
QY = o x o
where @ is again a uniform mesh of order N, and @3 is defined as follows.
The interval [0, 1] is divided into two parts
[0, UyA], [0;, 1]
The transition point U;‘ is defined by

o, =min{1/2,eIn(1/e)},

The intervals [0,0,'], [o;}, 1] are then divided into N/2 equal parts.
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We now examine the performance of standard upwinding on this mesh. If
we again produce a table of estimated orders of convergence for the alternative
mesh we obtain the results in Table 3

Number of Intervals N
€ 8 16 32 64 | 128
1 1.00 | 1.00 | 1.00 | 1.00 | 1.00
272 1.00 | 1.00 | 1.00 | 1.00 | 1.00
274 1.00 | 1.00 | 1.00 | 1.00 | 1.00
276 1.00 | 1.00 | 1.00 | 1.00 | 1.00

2746 1.00 | 1.00 | 1.00 | 1.00 | 1.00

TABLE 3. Convergence rates in approximating u using alternative mesh method

The rates look very good, in the sense that the method is clearly convergent
with order 1 for any fixed ¢; but when we examine the errors as given in Table
4, we see that, although the errors are decreasing for each fixed €, the error
is increasing as € — 0 for each fixed N. Thus it is impossible to calculate a
uniform convergence rate for this mesh.

A cross-section of the solution on each mesh for = 1/2 is shown in Figures
2 and 3 for e =102, 1074, 10~% and 1078.

Shishkin mesh Shishkin mesh

e=0001

0 0005 001 0015 002 0025 003 0035 004 0045 005 0 0.0002 0.0004 0.0006 0.0008 0.001

=102 e=10"*

Shishkin mesh Shishkin mesh

e=000001 = 00000001

0 50006 16005 150005 26005 o 5e-008 16-007 1.5e-007 20007

=106 e=10"8

FIGURE 2. Zoomed cross-sections of solutions on fitted mesh at z = 1/2
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Number of Intervals N

e 8 16 32 64 128 256

1 .123D+00 .605D-01 .293D-01 .137D-01 .586D-02 .195D-02

—2 .171D+400 .839D-01 .406D-01 .190D-01 .812D-02 .271D-02

7‘; .341D+00 .168D+00 .812D-01 .379D-01 .162D-01 .542D-02
8

.521D+00 | .256D+00 | .124D+00 .576D-01 .247D-01 | .822D-02
.699D-+00 | .341D+400 | .164D+00 .765D-01 .328D-01 | .109D-01
2710 || 869D+400 | .424D+00 | .204D-+00 .952D-01 .408D-01 | .136D-01
2712 |l 104D+01 | .506D+00 | .244D+400 | .114D+00 .488D-01 | .163D-01
g 14 .121D+401 | .589D+00 | .285D+00 | .133D+00 .569D-01 | .190D-01
2716 |l 137D401 | .673D+00 | .325D400 | .152D+400 .650D-01 | .217D-01
2718 |l 154D+01 | .756D+00 | .366D+00 | .171D+00 .731D-01 | .244D-01
2720 .171D+401 | .840D+00 | .406D+00 | .190D+00 .813D-01 | .271D-01
222 .188D+401 | .924D+00 | .447D+00 | .209D+00 .894D-01 | .298D-01
2724 || 205D+01 | .101D+01 | .487D+400 | .227D+00 .975D-01 | .325D-01
2726 I 222D+01 | .109D+01 | .528D+00 | .246D+00 | .106D+00 | .352D-01
2728 .239D+401 | .118D+01 | .569D+00 | .265D+400 | .114D+400 | .379D-01
2730 |l 256D401 | .126D+01 | .609D+00 | .284D+400 | .122D+400 | .406D-01
2732 || 273D401 | .134D+01 | .650D+00 | .303D+00 | .130D+00 | .433D-01
2731 1" 290D+01 | .143D+01 | .691D+00 | .322D+00 | .138D+00 | .460D-01
2736 .307D+01 | .151D+01 | .731D+400 | .341D+400 | .146D+400 | .487D-01
2738 .324D+401 | .159D+01 | .772D+400 | .360D+400 | .154D+400 | .515D-01
2740 |l 341D+401 | .168D+01 | .812D+400 | .379D+00 | .162D+00 | .542D-01
2742 |l 358D+401 | .176D+01 | .853D+00 | .398D400 | .171D+00 | .569D-01
274 |l 375D401 | .185D+01 | .894D+400 | .417D400 | .179D+00 | .596D-01
2746 |l 392D+01 | .193D+01 | .934D+400 | .436D+00 | .187D+00 | .623D-01
248 .409D+01 | .201D+01 | .975D400 | .455D+00 | .195D+00 | .650D-01
2750 .427D+01 | .210D+01 | .102D+01 | .474D+400 | .203D+400 | .677D-01
2752 || 444D+01 | .218D+01 | .106D+01 | .493D+00 | .211D+00 | .704D-01
275 |l 461D+01 | .227D+01 | .110D401 | .512D400 | .219D+00 | .731D-01
2756 .478D+401 | .235D+01 | .114D+401 | .531D+400 | .227D+400 | .758D-01
2758 |l 495D+01 | .243D+01 | .118D+401 | .550D400 | .236D+00 | .785D-01
2760 |l 512D401 | .252D+01 | .122D+401 | .569D+00 | .244D+00 | .812D-01
262 .529D401 | .260D+01 | .126D+401 | .588D+400 | .252D+400 | .839D-01
2764 |l 546D+01 | .269D+01 | .130D+01 | .607D+00 | .260D+00 | .867D-01
2798 |l 563D+01 | .277D+01 | .134D+401 | .626D+00 | .268D+00 | .894D-01
2770 .580D+01 | .285D+01 | .138D401 | .644D+400 | .276D+00 | .921D-01

TABLE 4. Maximum errors in approximating u using alternative mesh method

3. ONE-DIMENSIONAL MODEL PROBLEMS

3.1. A Neumann problem

To try to explain what is happening in the example above, we consider the
following model one-dimensional problem.

eu! (z) +aul(z) =0, ze€Q=(0,1)
eul(0) = —a, wu:(1)=0

where a is a positive constant. The exact solution is
us(z) = exp(—az/c) — exp(—a/e)

Note that
lim 1 (0) = 1

and that the boundary layer width is O(eln(1/e) since
d*u.
dzxk

We will examine the numerical performance of standard upwinding
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Alternative mesh Alternative mesh

0 0005 00l 0015 002 0025 003 0035 004 0045 005 0 0.0002 0.0004 0.0006 0.0008 0.001

xxxxxxxxxxxxxxxxxxxxxxx

0 5e-006 10005 1.50-005 20005 o 5-008 16007 150007 20007

=106 e=10"8

FIGURE 3. Zoomed cross-sections of solutions on alternative mesh at = 1/2

e?UN +aDTUN =0, z; €l
eDYUYN =—a, UY =0

on piecewise-uniform meshes of the form
Qf,v ={zi|lzi=z;-1+h, 0<i<N/2; =z =z;1+H, N/2<i<N}.

where the fine and coarse mesh widths are
h=20/N, H=2(1-0)/N.

A natural choice for the transition parameter is
e = min{0.5, (1/a)eIn(1/e)},

The exact solution of the difference scheme is

AV RGN

UN(z: , 1< NJ/2

(mZ) )\1 (Al + Az) -~ /
2)\N/2(>\i7N/2 B )\N/z)

UN(z;) = =L 2 2 /. i>N/2,

(wZ) (/\1 + /\2) ‘= /
where

_ 2a0 1 _ 2a(1-o0) N — 1

pl_Ns 1_1+p1 p2 = Ne 2_1+p2'

If the asymptotically natural choice is taken for the transition parameter (i.e.,
o = o) then for each fixed N

limA =0
e—0
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and thus

lim UM (0) = oo

e—0
and so the error in the numerical approximation becomes unbounded. More
precisely

[UN(0) - u-(0)] = O(ln(1/¢) /N)
Note that this logarithmic rate of growth of the error as ¢ — 0 may be
observed in any of the columns of Table 4, i.e., for any fixed N.

3.2. A Dirichlet problem
Consider now the following problem

eu!(z) +aul(z) =0, ze€Q=(0,1)
u:(0) =1, u(1)=0
where the coefficient a is again a positive constant. Note that
;1_% eul(0) = —a
We will examine the numerical performance of standard upwinding
e?UN +aDTUN =0, z; €l
vy =1, UY=0
on piecewise-uniform meshes of the form
QY = {zilz;=xi1 +h, 0<i<N/2; z;=x;1+H, N/2<i<N}
The exact solution of this difference scheme is
UN(zi) = AN = 1) +1, i< N/2

2/\N/2+1 /\i—N/2 _ )\N/2

UN(z;)=A ( L (>\12+ ” 2 ) , i>N/2,

where
-1
Ao (TN e
AL+ X L
Note that
—aA
lim eDYUN (0) = lim —
e—0 e—=0 1+ 21%—0;

If the natural transition point is taken then this limit tends to zero. Thus, for
this choice of transition parameter, and for any fixed choice of N,

. FTIN (Y — et (OV] —
;1_%|5D U™ (0) —eul(0) =a

We will observe this behaviour of the error in the next section.

4. A PROBLEM WITH PARABOLIC BOUNDARY LAYERS.

It was verified in [6] that methods using fitted meshes yield e-uniformly con-

vergent solutions of singular-perturbation problems which contain both regu-

lar and parabolic layers. Here we are concerned with the approximation of

the normalised derivatives eu, and \/eu,. Note the normalising is required
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as the derivatives themselves become unbounded as ¢ — 0; however, from
the known bounds on the first order derivatives we know that the normalised
derivatives remain bounded as ¢ — 0, and we approximate them by eD}UN
and \/eDUXN.

We consider the sample convection-diffusion problem

8Au8+(1+x2+y2)% =0, (z,y)eQ=(0,1)x(0,1) (2a)
with Dirichlet boundary conditions
ue (2,0) = 6423 (1 — 2)® . (1,y) = 64y3(1 — )3 (2b)
and
u-(z,1) = u(0,y) =0 (2¢)

Both regular and parabolic layers are present in its solution.
Now we define the fitted mesh for this problem.

0 =] xw;
where @7 is defined as follows. The interval [0,1] is divided into two parts
[0,04], [0, 1]
As before, the transition point o, is defined by
o, =min{l/2,eln N},

The intervals [0, 0], [0, 1] are divided into N/2 equal parts.
The mesh @, is also a fitted mesh constructed as follows. The interval [0, 1]
is divided into three parts

[0,0y], [0y, 1 = 0y], [1 — 0, 1]
where o, € (0,1/4] depends on € and N and is given by
oy, = min[1/4,/ln N]
The intervals [0, 0], [1 — 0y, 1] are divided into N/4 equal parts and the interval
[0y,1 — 0y] is divided into N/2 equal parts.

Let us first look at the performance of standard upwinding on this mesh.
That is,

INU. =e0?U. +0?U. + (1 + 2> +y*)DFU. =0 on QF
u T Yy x

Figure 4 shows the numerical solution of (2) on a fitted mesh with e = 1073
and N =64

The following tables give the maximum pointwise errors and the convergence
rates for the numerical approximations of the normalised derivatives on the
fitted meshes. They show that the errors stabilise as ¢ — 0 and indicate
uniform in € convergence of the method.

As an alternative mesh for this problem, we consider the following, proposed
in [9]



Number of Intervals N

€ 8 16 32 64 128 256
1 0.444D+-00 0.204D+-00 0.989D-01 0.473D-01 0.204D-01 0.681D-02
0.375D+400 | 0.219D+00 | 0.104D+400 | 0.481D-01 | 0.205D-01 | 0.684D-02
0.142D+-00 0.101D+-00 0.536D-01 0.284D-01 0.134D-01 0.480D-02
0.120D+-00 0.805D-01 0.488D-01 0.266D-01 0.128D-01 0.465D-02
0.101D+400 0.767D-01 0.463D-01 0.254D-01 0.123D-01 0.452D-02
210 0.942D-01 0.755D-01 0.459D-01 0.251D-01 0.122D-01 0.448D-02
212 0.934D-01 0.748D-01 0.457D-01 0.250D-01 0.121D-01 0.446D-02
914 0.932D-01 0.744D-01 0.455D-01 0.250D-01 0.121D-01 0.446D-02
216 0.931D-01 0.742D-01 0.453D-01 0.250D-01 0.121D-01 0.446D-02
218 0.931D-01 0.741D-01 0.453D-01 0.250D-01 0.121D-01 0.445D-02
2—20 0.931D-01 0.741D-01 0.453D-01 0.250D-01 0.121D-01 0.445D-02

234 0.931D-01 0.740D-01 0.453D-01 0.250D-01 0.121D-01 0.445D-02

TABLE 5. Maximum pointwise errors in approximating eu, using fitted mesh
method

Number of Intervals N

e 8 16 32 64 | 128

1 0.73 | 0.79 | 0.85 | 0.92 | 0.96
272 0.52 | 0.74 | 0.87 | 0.93 | 0.97
274 0.35 | 0.79 | 0.83 | 0.66 | 0.74
26 0.71 | 0.46 | 0.37 | 0.63 | 0.70
278 0.60 | 0.09 | 0.36 | 0.60 | 0.69
2~ 10 0.85 | 0.05 | 0.35 | 0.61 | 0.69
212 0.94 | 0.04 | 0.34 | 0.61 | 0.69
214 0.98 | 0.02 | 0.34 | 0.60 | 0.69
216 0.99 | 0.02 | 0.34 | 0.60 | 0.69
218 1.00 | 0.01 | 0.34 | 0.60 | 0.69
2734 1.00 | 0.01 | 0.34 | 0.60 | 0.69
Uniform: 0.73 0.79 0.85 0.92 0.96

TABLE 6. Orders of convergence in approximating eu, using fitted mesh
method.

Number of Intervals N

e 8 16 32 64 128 256

1 0.430D+-00 0.210D+-00 0.102D+-00 0.469D-01 0.205D-01 0.690D-02
272 0.430D+00 | 0.230D+00 | 0.129D+400 0.627D-01 0.275D-01 | 0.925D-02
274 0.650D+400 | 0.305D+00 | 0.154D+400 0.742D-01 0.325D-01 | 0.110D-01
2-6 0.934D+-00 0.482D+-00 0.230D+-00 0.113D+00 0.498D-01 0.169D-01
2—8 0.736D+00 0.587D+00 0.370D+00 0.219D+00 0.999D-01 0.346D-01
2~ 10 0.680D+00 | 0.562D+00 | 0.347D+400 | 0.208D+00 | 0.108D+00 | 0.411D-01
212 0.672D+00 0.560D+00 0.347D+00 0.208D+00 0.108D+00 0.410D-01

2734 0.671D+400 | 0.560D+00 | 0.347D400 | 0.208D+00 | 0.108D+400 | 0.410D-01

TABLE 7. Maximum pointwise errors in approximating /eu, using fitted mesh
method.
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FIGURE 4. Solution of Problem (2) on fitted mesh Q% with e = 0.001
Number of Intervals N

e 8 16 32 64 | 128

il 0.88 | 0.97 | 0.95 | 0.94 | 0.98
272 0.63 | 0.80 | 0.90 | 0.95 | 0.98
24 0.65 | 0.83 | 0.87 | 0.93 | 0.97
2-6 0.25 | 0.65 | 0.77 | 0.88 | 0.94
28 -0.49 | -0.25 | 0.01 | 0.77 | 0.88

2~ 10 -0.55 | -0.11 | 0.22 | 0.44 | 0.60
212 -0.56 | -0.11 | 0.22 | 0.44 | 0.60
2734 -0.56 | -0.11 | 0.22 | 0.44 | 0.60
Uniform: 0.88 | 0.75 | 0.0l | 0.77 | 0.65

TABLE 8. Orders of convergence in approximating \/eu, using fitted mesh
method.

where ©f* is defined as follows. The interval [0, 1] is divided into two parts
0,02], [0, 1]
and the transition point af is defined by
o2 = min{1/2,eln1/e},

The intervals [0, 0], [02, 1] are divided into N/2 equal parts.
The mesh ©f' is constructed as follows. The interval [0,1] is divided into
three parts

[070;]7[0;471_0;4]7[1_0;4)1]

where U;‘ € (0,1/4] depends on € and is given by

a; =min[l1/4,+/eln1/¢]

The intervals [0, 0], [1—07', 1] are divided into N/4 equal parts and the interval
[0}, 1 — 0;}] is divided into N/2 equal parts.
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Number of Intervals N

e 8 16 32 64 128 256

1 .444D+00 .204D+00 .989D-01 .473D-01 .204D-01 .681D-02

—2 .452D+400 .276D-+00 .138D+00 .649D-01 .289D-01 .110D-01

7‘; .222D+00 .101D+00 .494D-01 .234D-01 .104D-01 .108D+00
8

.362D+00 | .152D+00 .643D-01 .266D-01 | .964D-02 .186D-02
.497D400 | .214D+00 .909D-01 .390D-01 | .155D-01 .452D-02
2710 |l 622D+00 | .296D+00 | .123D+00 521D-01 | .214D-01 .736D-02
2-12 || .720D+00 | .369D+00 | .153D-+00 .655D-01 | .274D-01 .102D-01
2714 |l 796D+00 | .435D+00 | .180D+400 .790D-01 | .334D-01 .129D-01
2716 || 853D400 | .504D+00 | .217D+00 .919D-01 | .395D-01 .158D-01
2~18 || 895D+00 | .568D+00 | .257D-+00 | .108D+00 | .459D-01 .187D-01
2720 .925D+00 | .625D+00 | .297D400 | .124D+00 | .522D-01 .215D-01
2722 .947D+00 | .677D+00 | .336D400 | .139D+00 | .584D-01 .244D-01
2724 || .963D-+00 | .722D+00 | .375D-+00 | .153D+00 | .656D-01 .274D-01
2726 || 974D+400 | .762D+00 | .412D-+00 | .166D+00 | .724D-01 .303D-01
2728 || 982D+400 | .797D+00 | .449D-+00 | .179D+00 | .791D-01 .334D-01
2730 || 988D-+00 | .827D+00 | .483D-+00 | .197D+00 | .855D-01 .365D-01

TABLE 9. Maximum pointwise errors in approximating eu, using alternative
mesh method.

Number of Intervals N

e 8 16 32 64 128 256

1 430D+00 | .210D+00 | .102D+00 469D-01 205D-01 690D-02
272 .430D+00 | .231D+400 | .134D+00 .658D-01 .293D-01 .102D-01
24 .691D+00 | .305D+00 | .152D+400 .740D-01 .326D-01 551D-01
26 .965D+00 | .478D+00 | .231D+00 | .113D+00 .497D-01 .168D-01
2~ 8 .923D400 | .512D+00 | .244D+00 | .111D+00 .326D-01 .573D-01
2~ 10 .850D+00 | .534D+00 | .254D400 | .109D+00 .294D-01 | .161D4-00
2712 |l 885D+00 | .580D+00 | .283D+00 | .126D+00 .387D-01 .777D-01
271 |l 917D400 | .619D+00 | .310D+00 | .142D+00 .476D-01 .463D-02
2716 .940D+00 | .652D+00 | .332D400 | .155D+00 .548D-01 .324D-02
2718 |l 957D4+00 | .679D+00 | .354D+00 | .168D+00 .616D-01 .480D-02
2720 |l 970D+00 | .702D+00 | .374D+00 | .180D+00 .681D-01 .768D-02
2722 || 978D+00 | .722D+00 | .395D+00 | .193D+00 .745D-01 .107D-01
2724 |l 984D+00 | .739D+00 | .414D+00 | .203D+00 .807D-01 .138D-01
2726 |l 989D+00 | .753D+00 | .434D+00 | .213D+00 .867D-01 .167D-01
2728 || 992D+00 | .765D-+00 | .451D+00 | .223D+00 .925D-01 .196D-01
2730 |l 994D+00 | .775D+00 | .468D+00 | .233D+400 .983D-01 .225D-01
2732 || 996D+00 | .785D+00 | .484D+400 | .242D+00 | .104D+00 .252D-01
2734 || 997D+400 | .792D+00 | .499D+00 | .250D+00 | .108D--00 .279D-01

TABLE 10. Maximum pointwise errors in approximating \/eu, using alternative
mesh method.

We consider the performance of standard upwinding on this mesh.
LNU. =e6*U. +DfU. =0 on QY

The final two tables give the errors in the numerical approximations of the
normalised derivatives using the alternative mesh. As predicted by the analysis
of the one dimensional model problem, the errors tend to 1 as € — 0.

5. SUMMARY

We have demonstrated in this paper, that a numerical method which uses

upwind finite difference operators on a fitted mesh where the transition points

depend on both € and N is e-uniform as predicted in the theory of Shishkin.
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We also illustrated some deficiencies of a mesh which has transition points
dependent on eln1/e.
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